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Abstract Accurate representation of aerosol optical properties is essential for modeling and remote sensing of 21 

atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, 22 

use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational 23 

demands. Computationally efficient parameterizations for aerosol size are needed. In this study, airborne 24 

measurements over the United States (DISCOVER-AQ) and South Korea (KORUS-AQ) are interpreted with a global 25 

chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organic matter (OM) and 26 

sulfate-nitrate-ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong 27 

correlation (r = 0.83) between dry aerosol size and the sum of OM and SNA mass concentration (M!"#$%). A global 28 

microphysical simulation (GEOS-Chem-TOMAS) indicates that M!"#$%, and the ratio between the two components 29 

(&'
()*

) are the major indicators for SNA and OM dry aerosol size. A parameterization of dry effective radius (Reff) for 30 

SNA and OM aerosol is proposed, which well represents the airborne measurements (R2 = 0.74, slope = 1.00) and the 31 

GEOS-Chem-TOMAS simulation (R2 = 0.72, slope = 0.81). When applied in the GEOS-Chem high-performance 32 

model, this parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the 33 
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ground-measured AOD from the Aerosol Robotic Network (AERONET; R2 from 0.68 to 0.73, slope from 0.75 to 34 

0.96). Thus, this parameterization offers a computationally efficient method to represent aerosol size dynamically.  35 

1 Introduction  36 

Aerosol size has numerous effects on aerosol physical and chemical properties and further on atmospheric chemistry. 37 

Aerosol size-dependent heterogeneous chemistry affects gaseous oxidants that in turn affect production rates of 38 

aerosol components such as sulfate and secondary organic aerosol (Ervens et al., 2011; Estillore et al., 2016). Aerosol 39 

size also affects loss rates due to dry and wet deposition (Seinfeld & Pandis, 2016). Both direct and indirect aerosol 40 

radiative forcing are sensitive to aerosol size due to the strong size dependence of aerosol extinction and of the number 41 

of cloud condensation nuclei (Adams & Seinfeld, 2002; Emerson et al., 2020; Faxvog & Roessler, 1978; Mishchenko 42 

et al., 2002). The size dependence of aerosol extinction and scattering phase function also affects the retrieval of 43 

aerosol properties from satellites (Jin et al., 2022; Kahn et al., 2005; Levy et al., 2013). Aerosol size affects the fraction 44 

of particles that deposit in the body when breathing as well as location within the body where they deposit (Hinds & 45 

Zhu, 1999). An appropriate representation of aerosol size is essential for modeling aerosol composition and optical 46 

properties (Kodros & Pierce, 2017), interpreting satellite data (Kahn et al., 2005; Levy et al., 2013), studying climate 47 

processes (Kellogg, 1980; Twomey, 2007), and moving from aerosol exposure towards dose in health studies (Kodros 48 

et al., 2018).  49 

The evolution of the aerosol size distribution is affected by various processes, such as nucleation, condensation, 50 

coagulation, and deposition. Nucleation events contribute to the number of particles in the nucleation mode (diameters 51 

less than about 10 nm) and thus tend to decrease the mean aerosol size for a population (Aalto et al., 2001). In polluted 52 

areas with high emission rates of aerosol precursors, mean aerosol size tends to increase by condensation and 53 

coagulation (Sakamoto et al., 2016; Sun et al., 2011). Dry and wet aerosol deposition have strong size dependencies 54 

due to competing physical processes (Emerson et al., 2020; Reutter et al., 2009; Ruijrok et al., 1995). The aerosol size 55 

distribution can be simulated using aerosol microphysical schemes, such as the TwO Moment Aerosol Sectional 56 

(TOMAS; Adams & Seinfeld, 2002) microphysics model, the Advanced Particle Microphysics (APM; Yu & Luo, 57 

2009) model, the Global Model of Aerosol Processes (GLOMAP; Mann et al., 2010), and the Modal Aerosol Module 58 

(MAM4; X. Liu et al., 2016). These schemes have valuable prognostic capabilities; however, their computational cost 59 

has limited their use in Chemistry Climate Models (CCMs) or Chemical Transport Models (CTMs). For example, 60 

only 3 of the 10 models that included aerosols, studied by the Atmospheric Chemistry and Climate Model 61 

Intercomparison Project, include online size-resolved aerosol microphysics (Kodros & Pierce, 2017; Lamarque et al., 62 

2013).  63 

Methods are needed to better represent aerosol size in CCMs or CTMs without a microphysics scheme (referred to as 64 

bulk models). These bulk models usually use prescribed relationships to obtain size-resolved aerosol properties (Croft 65 

et al., 2005; Karydis et al., 2011; Zhai et al., 2021), which may insufficiently represent the temporal and spatial 66 

variation (Kodros & Pierce, 2017). For example, in the GEOS-Chem CTM, a fixed dry aerosol geometric mean radius 67 

(Rg) is assumed for organic matter (OM) and sulfate-nitrate-ammonium (SNA), which is based on analysis of long-68 
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term aerosol composition and scattering measurements provided by the IMPROVE network across the continental 69 

U.S. (Latimer & Martin, 2019). However, subsequent analysis by Zhai et al. (2021) found that this aerosol size 70 

underestimated the aerosol mass scattering efficiency and the aerosol extinction coefficients during an aircraft 71 

campaign over South Korea (KORUS-AQ). Thus, neglect of aerosol microphysical processes that shape aerosol size 72 

distributions can be a significant source of uncertainty in aerosol optical properties in a CTM. A balance between 73 

computational cost and representativeness of aerosol size is needed. One option is to use models with size-resolved 74 

aerosol microphysics models to inform bulk models, such as was done for the parameterization of biomass burning 75 

aerosol size by Sakamoto et al. (2016). 76 

Recent airborne measurements offer information to evaluate and improve the simulation of aerosol size. DISCOVER-77 

AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air 78 

Quality) was a multi-year campaign over four U.S. cities that provides 3-D resolved measurements of atmospheric 79 

gas composition, aerosol composition, size distribution, and optical properties (Choi et al., 2020; Chu et al., 2015; 80 

Sawamura et al., 2017). KORUS-AQ (the Korea-United States Air Quality Study) offers similar measurements in a 81 

different environment with higher aerosol mass loadings (Choi et al., 2020; Jordan et al., 2020; Nault et al., 2018; Zhai 82 

et al., 2021). 83 

To study the global variation in aerosol size, we explore airborne measurements from DISCOVER-AQ and KORUS-84 

AQ, as well as output from the GEOS-Chem-TOMAS microphysics model. We focus on OM and SNA, which 85 

dominate fine aerosol composition in populated areas. The driving factors for variation in aerosol size are examined. 86 

A parameterization of aerosol size using these driving factors is proposed. This parameterization is then applied to a 87 

GEOS-Chem high-performance model bulk simulation for global aerosol optical depth (AOD), which is evaluated by 88 

ground-measured AOD from the Aerosol Robotic Network (AERONET).   89 

2 Observations and Models  90 

2.1 Observations  91 

2.1.1 Aircraft measurements 92 

We examine airborne measurements from two NASA campaigns, DISCOVER-AQ and KORUS-AQ. DISCOVER-93 

AQ includes four deployments in Maryland (MD), California (CA), Texas (TX), and Colorado (CO). KORUS-AQ is 94 

an international cooperative field study program conducted in South Korea (KO), sponsored by NASA and the South 95 

Korean government through the National Institute of Environmental Research. The year as well as the date and altitude 96 

ranges of each deployment are in Table 1.  97 

Table 1. Temporal and spatial coverage of each aircraft deployment 98 

Campaign Year Date Range Altitude from surface 

MD 2011 07/01-07/29 0 to 5 km 

TX 2013 09/04-09/29 0 to 5 km 
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CA 2013 01/16-02/06 0 to 4 km 

CO 2014 07/17-08/10 0 to 6 km 

KO 2016 05/02-06/11 0 to 8 km 
 99 

Measurements used in this study include aerosol composition, ambient aerosol extinction coefficients, aerosol number 100 

size distribution, gas tracer species, and meteorological data. Measurement methods are listed in Table 2. Measured 101 

aerosol mass is converted from standard to ambient condition before analysis using ambient temperature and pressure. 102 

We use OM directly measured during KORUS-AQ. We use water soluble organic carbon (OC) and a parameterized 103 

ratio between OM and OC (Philip et al., 2014) to calculate OM for DISCOVER-AQ. The parameterized OM is 104 

evaluated with KORUS-AQ data, and overall consistency is found (Figure A1; Appendix A). For both campaigns, 105 

dust concentration is derived from Ca2+ and Na+ assuming non-sea salt Ca2+ accounts for 7.1% of dust mass (Shah et 106 

al., 2020): 107 

 
𝐷𝑢𝑠𝑡 = 	

([𝐶𝑎+,] − 0.0439 [𝑁𝑎
,]
2 5

0.071  
Eqn. (1) 

Sea salt is calculated from measured Na+ following previous studies (Malm et al., 1994; Remoundaki et al., 2013; 108 

Snider et al., 2016). The crustal component is removed by subtracting 10 % of [Al3+] (Remoundaki et al., 2013). A 109 

2.54 scalar is applied to [Na+]ss to account for [Cl−] (Malm et al., 1994): 110 

 𝑆𝑒𝑎	𝑆𝑎𝑙𝑡 = 2.54([𝑁𝑎,] − 0.1[𝐴𝑙-,]) Eqn. (2) 

Effective radius (Reff ; Hansen & Travis, 1974), defined as the area-weighted mean radius of a particle population, is 111 

used as a surrogate for  aerosol size: 112 

 𝑅.// =
∫𝑟𝜋𝑟+𝑛(𝑟)𝑑𝑟
∫𝜋	𝑟+𝑛(𝑟)𝑑𝑟

 Eqn. (3) 

Measurement data are screened for dust influence by excluding data with the sum of SNA and OM (MSNAOM) < 4 × 113 

dust mass.   114 

Table 2. Aircraft observations used in this study*  115 

Variables DISCOVER-AQ KORUS-AQ 

Bulk aerosol ionic composition IC-PILS a SAGA b 

Sub-micron non-refractory aerosol composition TOC-PILS c HR-ToF-AMS d 

Refractory black carbon concentration SP2 e 

Dry aerosol size distribution UHSAS f or LAS g LAS g 
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Aerosol extinction profile at 532 nm HSRL h 

NO2 4-Channel Chemiluminescence Instrument i 

Relative humidity (RH) DLH j 

* Adapted from Zhai et al. (2021)   116 

a Ion Chromatography Particle-Into-Liquid Sampler, with a 1.3 µm inlet cutoff aerodynamic diameter 117 

(Hayes et al., 2013; Lee et al., 2003).  118 

b Soluble Acidic Gases and Aerosol (SAGA) instrument (Dibb et al., 2003). The cutoff aerodynamic 119 

diameter of the inlet is around 4 µm (McNaughton et al., 2007).  120 

c Water-soluble organic carbon Particle-Into-Liquid Sampler, with a 1 µm inlet cutoff diameter at 1 121 

atmosphere ambient pressure (Sullivan et al., 2019; Timonen et al., 2010). 122 

d University of Colorado Boulder High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-123 

AMS) with a 1 µm inlet cutoff diameter (Canagaratna et al., 2007; Guo et al., 2021; Nault et al., 2018). 124 

e Single-Particle Soot Photometer (SP2), measuring refractory black carbon with a volume equivalent 125 

diameter of 100-500 nm (Lamb et al., 2018; Schwarz et al., 2006). 126 

f Particles with mobility diameters between 60 to 1000 nm can be measured by Ultra-High Sensitivity 127 

Aerosol Spectrometer (UHSAS), which illuminates particles with a laser and relate the single-particle light 128 

scattering intensity and count rate measured over a wide range of angles to the size-dependent particle 129 

concentration (Moore et al., 2021). Particles in the sample are dried to less than 20 % RH.  130 

g Particles between 100 to 5000 nm measured by Laser Aerosol Spectrometer (LAS, TSI model 3340). The 131 

principle of LAS is the same as that of UHSAS, but with a different laser wavelength (1054 nm for the 132 

UHSAS and 633 nm for the LAS) and intensity (about 100 times higher for the UHSAS). These differences 133 

affect how the instrument sizes non-spherical or absorbing aerosols (Moore et al., 2021). Particles in the 134 

sample are dried to less than 20 % RH. 135 

h NASA Langley airborne High Spectral Resolution Lidar (HSRL; Hair et al., 2008). 136 

i National Center for Atmospheric Research (NCAR) 4-Channel Chemiluminescence Instrument 137 

(Weinheimer et al., 1993) 138 

j NASA Diode Laser Hygrometer (DLH; Podolske et al., 2003). 139 
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2.1.2 AERONET AOD 140 

We use ground-based AOD observations to evaluate our parameterization and simulated AOD. Aerosol Robotic 141 

Network (AERONET) is a worldwide network that provides long-term sun photometer measured AOD. We use the 142 

Version 3 Level 2 database, which includes an improved cloud screening algorithm (Giles et al., 2019). AOD at 550 143 

nm wavelength, interpolated based on the local Ångström exponent at 440 and 670 nm channels, is used in this study. 144 

For each site, we use data for the year 2017, excluding months with less than 20 days of measurements and excluding 145 

sites with data less than 4 months.   146 

2.2 GEOS-Chem simulation 147 

We interpret the aircraft observations with the GEOS-Chem chemical transport model (www.geos-chem.org, last 148 

access: 30 October 2022). GEOS-Chem is driven by offline meteorological data from the Goddard Earth Observing 149 

System (GEOS) of the NASA Global Modeling and Assimilation Office (Schubert et al., 1993). We use the high-150 

performance implementation of GEOS-Chem (GCHP; Eastham et al. 2018)  to examine the effect of variation in 151 

aerosol size on AOD. We also use the TOMAS microphysical scheme, coupled with the standard GEOS-Chem 152 

implementation (GEOS-Chem classic), to explicitly resolve aerosol microphysics. The bulk and the microphysics 153 

simulations share common emissions and chemical mechanisms. They are both conducted for the year 2017 and driven 154 

by MERRA-2 meteorological fields.  155 

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium system (Fountoukis & Nenes, 2007; Park, 156 

et al., 2004), primary and secondary carbonaceous aerosols (Marais et al., 2016; Park et al., 2003; Pye et al., 2010; 157 

Wang et al., 2014), sea salt (Jaeglé et al., 2011), and mineral dust (Fairlie et al., 2007). The primary emission data are 158 

from the Community Emissions Data System (CEDSGBD-MAPS; McDuffie et al. 2020). Dust emission inventories 159 

include updated natural dust emission (Meng et al., 2021), and anthropogenic fugitive, combustion, and industrial dust 160 

(AFCID; Philip et al., 2017). Resolution-dependent soil NOx, sea salt, biogenic VOC, and natural dust emissions are 161 

calculated offline at native meteorological resolution to produce consistent emissions across resolution (Meng et al., 162 

2021; Weng et al., 2020). Biomass burning emissions use the Global Fire Emissions Database, version 4 (GFED4) 163 

(Van Der Werf et al., 2017). We estimate organic matter (OM) from primary organic carbon using the same OM/OC 164 

parameterizations as applied for DISCOVER-AQ (Canagaratna et al., 2015; Philip et al., 2014). Dry and wet 165 

deposition follows Amos et al. (2012), with a standard resistance-in-series dry deposition scheme (Wang et al., 1998). 166 

Wet deposition includes scavenging processes from convection and large-scale precipitation (Liu et al., 2001).  167 

Global relative humidity dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS; 168 

Koepke et al. 1997; Martin et al. 2003) with updates for SNA and OM (Latimer & Martin, 2019), mineral dust (Zhang 169 

et al., 2013), and absorbing brown carbon (Hammer et al., 2016). In the current GEOS-Chem model, the SNA and 170 

OM Reff of particular interest here are based on co-located measurements of aerosol scatter and mass from the 171 

IMPROVE network at U.S. national parks over the period 2000-2010, together with a k-Kohler framework for aerosol 172 

hygroscopicity (Kreidenweis et al., 2008) as implemented by Latimer and Martin (2019). Aerosol extinction is 173 
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calculated as the sum of extinction from each aerosol component with aerosol optical properties listed in Table A1, as 174 

described in Appendix A2. 175 

A global GCHP simulation (Eastham et al. 2018) version 13.0.0 (DOI: 10.5281/zenodo.4618180) that includes 176 

advances in performance and usability (Martin et al., 2022), is conducted on a C90 cubed-sphere grid corresponding 177 

to a horizontal resolution of about 100 km.  178 

The TOMAS microphysics scheme, coupled with the GEOS-Chem simulation, conserves aerosol mass, and tracks 179 

particles with diameters from approximately 1 nm to 10 µm (Adams & Seinfeld, 2002). Microphysical processes in 180 

TOMAS include nucleation, condensation, evaporation, coagulation, and wet and dry deposition (Adams & Seinfeld, 181 

2002). Nucleation in TOMAS follows a ternary scheme (sulfuric acid, ammonia, and water) when ammonia mixing 182 

ratios are greater than 0.1 ppt; otherwise, a binary nucleation scheme is used (Napari et al., 2002). The nucleation rate 183 

is scaled by 10-5 to better match the observations (Westervelt et al., 2013). The condensation and evaporation algorithm 184 

is based on a study from Tzivion et al. (1989), including interaction with secondary organic aerosol (D’Andrea et al., 185 

2013). Interstitial coagulation in clouds is also included (Pierce et al., 2015).  186 

For each size bin, TOMAS tracks the mass and number of sulfate, sea salt, black carbon, OC, dust, and water. Primary 187 

sulfate emissions have 2 lognormal modes: 15% of the mass with a number median diameter (NMD) of 10 nm and 188 

geometric standard deviation (σ) of 1.6 and the remainder with a NMD of 70 nm and σ of 2 (Adams & Seinfeld, 2003). 189 

The size of emitted carbonaceous particles varies depending on the source: those produced by fossil fuel have a NMD 190 

of 30 nm and σ of 2, while biofuel and biomass burning particles are emitted with a NMD of 100 nm and σ of 2 (Pierce 191 

et al., 2007). Meteorology and most of the emissions in GEOS-Chem-TOMAS follow the bulk simulation, except that 192 

online schemes are used for dust (Zender et al., 2003) and sea salt (Jaeglé et al. 2011).   193 

A one-year global GEOS-Chem-TOMAS (version 13.2.1. DOI: 10.5281/zenodo.5500717) simulation is conducted 194 

with a horizontal resolution of 4º × 5º and 47 vertical layers from surface to 0.01 hPa. Aerosols are tracked in 15 size 195 

bins with particle diameters ranging from about 3 nm to 10 µm.  196 

3 Development of a Parameterization of Aerosol Size   197 

We first examine the aircraft measurements for insight into the observed variation in aerosol size. Then we apply the 198 

size-resolved GEOS-Chem-TOMAS model to extend our analysis to the global scale and identify driving factors of 199 

aerosol size. We subsequently develop and test a parameterization of aerosol size for use in bulk models. 200 

3.1 Observed variation in aerosol size 201 

Figure 1 shows the daily-mean dry effective radius from DISCOVER-AQ and KORUS-AQ as a function of aerosol 202 

mass. Aerosol size, in terms of dry Reff, ranges from 90 nm to 179 nm for DISCOVER-AQ, which is generally smaller 203 

than for KORUS-AQ that ranges from 135 nm to 174 nm. MSNAOM from DISCOVER-AQ (1.4 μg/m3 to 27.4 μg/m3) 204 

is also generally less than that from KORUS-AQ (5.5 μg/m3 to 33.2μg/m3). A strong correlation (r = 0.83) between 205 

aerosol size and MSNAOM is evident. 206 
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 207 

Figure 1. Airborne measurements of dry effective radius (Reff) versus the sum of SNA and OM mass 208 

(MSNAOM) for DISCOVER-AQ (Maryland is abbreviated as MD, California as CA, Texas as TX, Colorado as 209 

CO) and for KORUS-AQ (KO) campaigns. Each point represents a daily average for the entire flight profile. 210 

Only data with MSNAOM > 4 × Dust mass is used.  211 

The positive relationship between dry aerosol size and mass of SNA and OM reflects the roles of emission, 212 

condensation, and coagulation in simultaneously increasing aerosol size and mass. This general tendency is also 213 

observed by many other studies (e.g., Bahreini et al., 2003; Rodríguez et al., 2007; Sakamoto et al., 2016; Sun et al., 214 

2010) despite variable aerosol sources and growth mechanisms. In cities, the joint increases in aerosol size and mass 215 

are usually attributable to anthropogenic emissions and condensation (Huang et al., 2013; Sun et al., 2011; Tian et al., 216 

2019). In remote areas, biomass burning shifts the particle size distribution toward larger radii due to high emission 217 

rates and coagulation in plumes (Ramnarine et al., 2019; Rissler et al., 2006) that, for example, increase both aerosol 218 

size and mass from the wet season to the dry season in Amazonia (Andreae et al., 2015; Rissler et al., 2006). The 219 

positive relationship between aerosol size and mass suggests the possibility of using aerosol mass as a predictor of 220 

Reff.  221 

We examine the ability of the GEOS-Chem bulk model to reproduce the observed extinction. The top panel of Figure 222 

2 compares the measured aerosol extinction profiles to calculated aerosol extinction profiles using default Reff. Details 223 

about the calculation are described in Appendix A2. Both measured and calculated extinction profiles exhibit 224 

increasing extinction toward the surface associated with increasing aerosol mass concentrations. However, biases are 225 

apparent for both DISCOVER-AQ and KORUS-AQ. The Reff from KORUS-AQ shown in Figure 1 have a mean value 226 

of 164 nm, larger than the value of 101 nm inferred by Latimer & Martin (2019) based on measurements of aerosol 227 

scatter and mass by the U.S. IMPROVE network. This bias was previously noted by Zhai et al. (2021). The mean Reff 228 

from DISCOVER-AQ of 138 nm is also larger than the inferred value. This likely reflects representativeness 229 

differences since the DISCOVER-AQ deployments focused on major urban areas during months of high aerosol 230 

loadings, while the IMPROVE measurements were at national parks throughout the year. The middle panel shows the 231 
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calculated extinction using the measured aerosol size distribution. Applying the measured aerosol size distribution 232 

addresses most discrepancies between the calculated and measured aerosol extinction profile for both KORUS-AQ 233 

and DISCOVER-AQ. The corresponding discrepancies in AOD estimation also significantly decreased (from 0.09 to 234 

0.03 for DISCOVER-AQ and from 0.17 to 0.02 for KORUS-AQ). The reduced discrepancies support the conclusions 235 

from Zhai et al. (2021) that the GEOS-Chem aerosol size is underestimated for KORUS-AQ and motivate 236 

parameterization of Reff for efficient representation of aerosol size for global scale aerosol modeling.  237 

 238 
Figure 2. Aerosol extinction profile for the DISCOVER-AQ and KORUS-AQ aircraft campaigns. Blue lines 239 

are the measured extinction profiles. Horizontal bars are calculated extinction using (top) default GEOS-240 

Chem Reff , (middle) measured Reff , and (bottom) parameterized Reff (described in Section 3.3), together with 241 

measured aerosol composition and RH. The aerosol extinction calculation is described in Appendix A.  242 
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3.2 Driving factors  243 

Given the strong positive correlation of aerosol mass with aerosol size, we further examine this relationship globally 244 

using GEOS-Chem coupled with the TOMAS aerosol microphysics scheme.  The top panel of Figure 3 shows the 245 

geographic distribution of annual mean surface layer dry Reff for locations and months where aerosol mass is 246 

dominated by SNA and OM, as indicated by MSNAOM > 90% of the aerosol mass. Among the areas of interest, biomass 247 

burning regions of Central Africa, South America, and boreal forest of North America exhibit the highest surface Reff 248 

of about 180 nm. Industrial areas such as East Asia and South Asia also exhibit high Reff of about 130 nm, given an 249 

abundance of particle emissions and gaseous precursors. The lowest surface Reff of about 80 nm is found in North 250 

America, where aerosol mass concentrations are low.  251 

The middle panel of Figure 3 shows the simulated MSNAOM from GEOS-Chem-TOMAS. Enhanced MSNAOM 252 

concentrations of over 40 μg/m3 are apparent over East Asia and South Asia, reflecting intense anthropogenic 253 

emissions. Another MSNAOM hotspot can be seen in Central Africa, driven by biomass burning during the dry season 254 

(McDuffie et al., 2021; Van Der Werf et al., 2017) and sometimes exacerbated by anthropogenic emissions (Ngo et 255 

al., 2019). Moving from North America, to Europe, and then to Asia, MSNAOM concentrations exhibit a generally 256 

increasing tendency, consistent with the Reff tendency in the top panel and aligning with the relationship between 257 

aircraft measurements over the U.S. and South Korea.  258 

However, in South America, where Reff is among the highest, MSNAOM is relatively low. This discrepancy motivates 259 

the search for other factors, such as aerosol composition, that are associated with aerosol size. In South America, 260 

aerosol mass is mostly from natural sources, particularly biomass burning during the dry seasons. Rg for a particle 261 

population from biomass burning ranges from 60 nm to 170 nm (Janḧall et al., 2010; Reid et al., 2005; Rissler et al., 262 

2006), usually larger than that of primary sulfate aerosol (5 to 35 nm; Plaza et al., 2011; Whitey, 1978). Therefore, 263 

the relative abundance of OM in the total MSNAOM can serve as another predictor of Reff. The bottom panel of Figure 264 

3 shows the ratio between OM and SNA mass. In addition to the Amazon basin, the biomass burning regions of Central 265 

Africa and boreal forests in Asia and North America are all areas with high OM mass fractions, which contribute to 266 

their high Reff despite the low MSNAOM.  267 
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 268 

Figure 3: Geographic distribution of GEOS-Chem-TOMAS-simulated annual mean surface layer aerosol 269 

properties; (top) Reff with color intensity indicating the number of months included (Mass of SNA and OM > 270 

90% of aerosol mass), (middle) the sum of SNA and OM mass (MSNAOM), and (bottom) OM/SNA. 271 

3.3 Parameterization and evaluation 272 

We use Multiple Linear Regression (MLR) to derive a parameterization of dry Reff as a function of MSNAOM and 273 

OM/SNA. We sample the GEOS-Chem-TOMAS simulation for locations dominated by MSNAOM (> 90%). We include 274 

all qualified data (8,569 grid boxes) from the planetary boundary layer (PBL) to focus on this region, while randomly 275 

sample 0.5% of simulations in the free troposphere (217,772 grid boxes) to allow the influence of remote regions in 276 

the training set. The reason for focusing on the PBL is twofold. First, the PBL generally has the highest aerosol loading 277 

that largely determines the columnar mass and AOD (Koffi et al., 2016; Tian et al., 2019; Zhai et al., 2021). Second, 278 

the PBL is the domain where the model-measurement difference exists (Figure 2, top panel).  279 
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Taking the logarithm of Reff and the logarithm of the two predictors facilitates linear relationships for regression, 280 

which yields the initial parameterization 281 

 𝑅.// = 78.3𝑀()*&'
0.+0 	(

𝑂𝑀
𝑆𝑁𝐴)

0.023 Eqn. (4) 

where Reff has units of nm, MSNAOM has units of μg/m3, and OM/SNA is unitless. The Reff parameterization is driven 282 

primarily by the mass of SNA and OM, modulated by the ratio of OM to SNA. This equation well represents the 283 

variation of Reff during the aircraft campaigns with an R2 of 0.74 (Figure B1, top left). The slope below unity (0.90) 284 

likely reflects the effect of coarse model resolution, which dilutes the particle or precursor concentration in turn 285 

reducing condensation and coagulation growth (AboEl-Fetouh et al., 2022; Ramnarine et al., 2019; Sakamoto et al., 286 

2016). Adjustment to this parameterization to account for these effects and align the slope with the airborne 287 

measurements rather than the model results in a final parameterization of 288 

 𝑅.// = 87.0𝑀()*&'
0.+0 	(

𝑂𝑀
𝑆𝑁𝐴)

0.023 Eqn. (5) 

Figure 4 shows the distribution of dry Reff based on GEOS-Chem-TOMAS and Eqn. (5). Circles in Figure 4 show the 289 

mean values of the sampled GEOS-Chem-TOMAS simulated Reff as a function of simulated MSNAOM concentrations, 290 

ranging from 0.02 to 102 μg/m3, and OM/SNA ranging from 0.13 to 55. Simulated Reff extends from 15 nm when both 291 

MSNAOM and OM/SNA are low (0.09 μg/m3 and 1.3, respectively), up to 282 nm when MSNAOM and OM/SNA are high 292 

(about 44 μg/m3 and 14 respectively). The background color indicates our parameterized Reff. A high degree of 293 

consistency exists between the parameterized Reff and simulated Reff, especially in the free troposphere where large 294 

gradients in Reff exist, with overall for the troposphere an R2 of 0.72, and a slope of 0.81 (Figure B1, bottom right). 295 

Despite the overall consistency, a few differences exist. When aerosol mass concentration is high, the parameterization 296 

tends to yield a higher Reff than in the GEOS-Chem-TOMAS simulation, since the adjustment using aircraft 297 

measurements led to 11% increase in Reff. At MSNAOM near 10 μg/m3 and OM/SNA near 10, the simulation indicates 298 

higher Reff than the parameterization, reflecting dilution downwind of biomass burning that reduces the aerosol mass 299 

concentration but has little influence on particle size in GEOS-Chem-TOMAS. A 10-20% underestimation in the 300 

parameterization at low OM/SNA reflects the advection and dilution of downwind of urban areas and in the free 301 

troposphere.  302 
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 303 

Figure 4.  Dry Reff as a function of MSNAOM and OM/SNA when SNA and OM are dominant (>90%). Each 304 

circle represents the mean value of the GEOS-Chem-TOMAS simulated Reff in each bin. Background color 305 

indicates the parameterized Reff. 306 

When applied to the airborne measurements, this parameterization only slightly overestimates the measured Reff from 307 

DISCOVER-AQ (139 nm vs. 138 nm) and slightly underestimates Reff from KORUS-AQ (157 nm vs. 164 nm). Most 308 

discrepancies between calculated and measured extinction from aircraft campaigns are eliminated (Figure 2, bottom 309 

panel) with AOD discrepancies reduced to 0.01 and 0.08 for DISCOVER-AQ and KORUS-AQ, respectively.  310 

We then apply Eqn. (5) to a GEOS-Chem bulk simulation to calculate Reff and AOD. The top panel of Figure 5 shows 311 

the annual mean dry Reff for surface SNA and OM aerosol with the color intensity indicating the ratio of SNA and 312 

OM mass to total aerosol mass at the surface. The parameterized Reff is usually higher than the default value of about 313 

100 nm in GEOS-Chem over land, and lower than that over the ocean, with a normalized root mean square deviation 314 

(NRMSD) of 43.8%. The spatial pattern well represents the GEOS-Chem-TOMAS simulation, with high Reff found 315 

in biomass burning regions in South America and Central Africa, as well as industrial regions in Asia. The horizontal 316 

variation diminishes with altitude (Figure B2), with the mean Reff decreasing from 85 nm (surface) to 43 nm (10 km). 317 

The middle panel of Figure 5 shows the simulated AOD, with the corresponding difference between the base 318 

simulation and the updated simulation in the bottom panel. To accommodate the parameterized Reff, a look-up table 319 

with a wide range of Reff (0.02 µm to 1.7 µm) and the corresponding extinction efficiencies for OM and SNA is created 320 

based on Mie Theory (Mishchenko et al., 1999, 2002). This update generally increases aerosol mass scattering by 321 

increasing the mass extinction efficiency, in turn, increasing AOD over regions with strong anthropogenic sources, 322 
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such as East Asia (by 0.13, 35.4%) and South Asia (by 0.13, 28.3%). It also slightly increases AOD over regions 323 

influenced by wildfires, such as South America (by 0.02, 12.2%), Central Africa (by 0.03, 17.4%), and the boreal 324 

forests in North America, Europe, and Asia (by 0.01-0.03, 12.1 to 16.9%).  Most increases occur near the surface 325 

(Figure B3), where the highest aerosol mass loading and mass extinction efficiency exist. The NRMSD between 326 

original and updated GEOS-Chem simulated AOD is 20.9% globally, and 28.8% over continents.  327 

 328 

Figure 5. (Top) Surface dry Reff for SNA and OM calculated using Eqn. (5) and GEOS-Chem bulk model 329 

simulated SNA and OM mass. FSNAOM is the ratio of SNA and OM mass to the total aerosol mass at the 330 

surface. (Middle) The GEOS-Chem simulated AOD using inferred Reff. (Bottom) the absolute difference 331 

between updated AOD and default AOD using dry Reff = 101 nm. 332 

Although Reff is only one of many processes affecting AOD, we evaluate the effect of the parameterization on the 333 

GEOS-Chem simulation of AOD to assess its implications. The left panel of Figure 6 shows for the default Reff, the 334 

https://doi.org/10.5194/egusphere-2022-1292
Preprint. Discussion started: 13 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

 

15 

percent difference between GEOS-Chem simulated AOD and AERONET AOD as a function of the parameterized 335 

surface Reff for SNA and OM. The simulation using the default Reff slightly overestimates AOD in regions with small 336 

parameterized Reff and underestimates AOD in regions with large parameterized Reff. The overestimates occur 337 

primarily in western Europe where SNA and OM concentrations are low, while the underestimates happen mainly 338 

over industrial regions in East Asia, Southeast Asia, and biomass burning areas in South America and Central Africa, 339 

where the SNA and OM mass loading are high (Figure B4). The underestimates are mitigated when applying the 340 

parameterized Reff in GEOS-Chem (Figure 6 , middle panel), yielding increased consistency between the measured 341 

(AERONET) AOD and simulated AOD (Figure 6, right; R2 change from 0.68 to 0.73, slope from 0.75 to 0.96). 342 

 343 

Figure 6. (Left and middle) Percent increase in GEOS-Chem simulated AOD minus AERONET AOD as a 344 

function of parameterized surface dry Reff for SNA and OM. Black lines represent the mean values of ∆AOD 345 

in each 35 nm bin; error bars represent the corresponding standard deviation. (Right) Scatter plot of 346 

AERONET versus simulated AOD with the default Reff (blue dots, line, and text), and with the parameterized 347 

Reff (red dots, line, and text). The 1:1 line is dashed. NRMSD is the normalized root mean square deviation 348 

between the two datasets. N is the number of points in each dataset. 349 

4 Conclusion  350 

Aerosol size strongly determines mass scattering efficiency with implications for calculation of aerosol optical 351 

properties. Prior work found that the global mean dry aerosol size used in a bulk aerosol model induced low bias 352 

versus measured extinction in a region with a high aerosol loading (Zhai et al., 2021). We interpreted aircraft 353 

measurements from DISCOVER-AQ and KORUS-AQ with a chemical transport model (GEOS-Chem) to better 354 

understand regional variation in aerosol size. The measurements had a strong positive correlation (r = 0.83) between 355 

aerosol size and mass of sulfate-nitrate-ammonium (SNA) and organic matter (OM), reflecting the high condensation 356 

and coagulation rates where emissions of particles and the gaseous precursors are abundant, indicating the possibility 357 

of using aerosol mass as a predictor of aerosol size.  358 

To gain a broader perspective of the global variation in aerosol size, we used the TOMAS microphysics package of 359 

the GEOS-Chem model to simulate the monthly mean aerosol mass, composition, and size distribution. We used 360 

effective radius (Reff) as a surrogate of aerosol size and examined its relationship with aerosol mass and components 361 
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where SNA and OM were dominant. We found that the sum of SNA and OM concentration, and the ratio between 362 

them, were the major predictors of Reff. We used GEOS-Chem-TOMAS model output to derive a parameterization of 363 

Reff, which well reproduced Reff measured from the aircraft campaigns (R2 = 0.74). When applied in the bulk GEOS-364 

Chem high-performance model, the parameterization tended to increase Reff of SNA and OM over regions with high 365 

concentrations of SNA and OM, and decrease Reff elsewhere relative to the standard model. This led to a global 366 

normalized root mean square deviation (NRMSD) of 43.8% between the original and updated surface Reff. The 367 

parameterized Reff tended to increase the vertical gradient in extinction relative to the standard model, due to the 368 

decrease in Reff with altitude. The NRMSD of global mean AOD between the original and updated simulations was 369 

20.9%, with the most significant regional AOD increase of about 0.13 in South and East Asia, where aerosol mass 370 

loadings are high. This parameterization led to improved consistency of GEOS-Chem simulated AOD with 371 

AERONET AOD (R2 from 0.68 to 0.73; slope from 0.75 to 0.96), by increasing AOD at high Reff. 372 

Overall, the simple parameterization of Reff derived in this study improved the accuracy in modeling aerosol optical 373 

properties without imposing additional computational expense. Other chemical transport models and modeling of 374 

other size-related processes, such as heterogeneous chemistry, photolysis frequencies, and dry deposition, may also 375 

benefit from the parameterized Reff. Further developments in computational efficiency of aerosol microphysics models 376 

and more abundant measurements of aerosol size and optical properties would both offer opportunities for further 377 

advances. 378 

  379 
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Appendix A 393 

A1 Application of spatially and temporally varying OM/OC ratio 394 

The top panel of Figure A1 shows scatter plots of the estimated and measured OM/OC and OM during the KORUS-395 

AQ campaign. The estimation is obtained by applying to OC measurement a NO2 inferred OM/OC from Philip et al. 396 

(2014), with a subsequent correction factor of 1.09 suggested by Canagaratna et al. (2015). Estimated OM is compared 397 

with measured OM by AMS during the campaign. Overall consistency is evident between NO2-derived OM/OC and 398 

measured OM/OC. The agreement is better below 500 m than above (left panel, R2 = 0.62 vs. 0.33). The discrepancy 399 

at high altitudes is mainly due to the low NO2 (<0.2 ppbv), where the Philip et al. (2014) equation is not applicable. 400 

An average OM/OC ratio (2.1) is applied in this case. A high degree of consistency exists between the estimated OM 401 

and measured OM, with R2 = 0.99 and slope = 0.91 for data from all altitudes (right panel), thus supporting the use of 402 

estimated OM in our analyses. The bottom left panel compares the vertical profile of the estimates and measurements, 403 

yielding overall consistency.  404 

   405 
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Figure A1. Scatter plots of estimated and measured OM/OC (top left) and OM (top right) during KORUS-406 

AQ. Each point represents a mean value of AMS measurement for a 1-hour interval. Red diamonds, lines, 407 

and texts represent data from 0-500 m altitude. Blue dots, lines, and text represent data above 500 m from the 408 

ground. Black solid lines and texts represent the line of best fit for all the data. The 1:1 line is dashed. 409 

NRMSD is the normalized root mean square deviation between the two datasets. N is the number of points in 410 

each dataset. (Bottom left) Mean values of OM/OC and OM from measurements and estimations along the 411 

altitude. (Bottom right) Flight tracks during KORUS-AQ. 412 

  413 
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A2 Aerosol Extinction Calculation in GEOS-Chem 414 

Extinction (Ext) of radiation by aerosols is represented as the sum of extinction due to each of the aerosol components 415 

using the following equation: 416 

 𝐸𝑥𝑡4 =	
3𝑄.56,4𝑀4

4𝜌4𝑅.//,4
 Eqn. (3) 

where subscript k indicates the property for the kth component. Reff is the effective radius defined as the area weighted 417 

mean radius. Qext is the area-weighted mean extinction efficiency. M is the aerosol mass loading per unit volume. ρ is 418 

the aerosol density. Aerosol optical depth (AOD) is the integral of aerosol extinction across the vertical domain. 419 

For each component, extinction is calculated for assumed log-normal size distribution with corresponding dry 420 

geometric mean radius Rg and geometric standard deviation σ, hygroscopicity, refractive index (RI), and density (ρ) 421 

for individual aerosol components, as listed in Table A1. Sulfate, nitrate, and ammonium are grouped into SNA for 422 

convenience. Reff and Qext are calculated using Mie Theory (Mishchenko et al., 1999, 2002) based on assumptions in 423 

aerosol size and RI. Hygroscopicity for SNA and OM is represented using a k-Kohler hygroscopic growth scheme 424 

(Kreidenweis et al., 2008) as implemented by Latimer & Martin (2019).  425 

Table A1. Dry aerosol properties in GEOS-Chem bulk model 426 

Aerosol 

components 
Rg, µm σ Hygroscopicity 

Refractive Index 

(dry, 550 nm) 
ρ, g cm-3 

Reff, 

µm  

Qext   

SNA 0.058 1.6 𝜅 = 0.61 1.53 – 6.0×10-3i 1.7 0.101 0.603 

OM 0.058 1.6 𝜅 = 0.1 1.53 – 6.0×10-3i 1.3 0.101 0.603 

  427 
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Appendix B 428 

 429 

Figure B1. (Top) Scatter plot of parameterized Reff and measured Reff from DISCOVER-AQ and KORUS-430 

AQ. Each point represents a daily mean measurement. (Bottom) Scatter plot of parameterized Reff and 431 

GEOS-Chem-TOMAS simulated Reff for the planetary boundary layer (blue dots, line, and texts), and for the 432 

free troposphere (yellow dots, line, and texts). Black solid lines and the texts indicate the entire troposphere 433 

with the sum of SNA and OM > 90% of aerosol mass. The 1:1 line is dashed. NRMSD is the normalized root 434 

mean square deviation between the two datasets. N is the number of points in each dataset. The left panel 435 

indicates the original parameterization from multiple linear regression. The right panel shows the adjusted 436 

parameterization using aircraft measurements.   437 
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 438 

Figure B2. Annual mean Reff for SNA and OM at (top) about 5 km, (middle) about 1 km, and (bottom) 439 

surface, calculated using Eqn. (5) and simulated SNA and OM mass from GEOS-Chem bulk model. FSNAOM is 440 

the ratio of SNA and OM mass to the total aerosol mass. Boxes in the bottom panel define regions referred to 441 

by Figure B3. 442 
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 443 

Figure B3. Global and regional aerosol extinction coefficient simulated by GEOS-Chem bulk model with 444 

original Reff (solid lines) and parameterized Reff (dashed lines). Regions are defined by the boxes in Figure B2. 445 

 446 

Figure B4. Difference between AERONET AOD minus default GEOS-Chem simulated AOD (dots) and 447 

difference between simulated AOD with the parameterized Reff minus AOD with default Reff (background).   448 
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